
Reciprocal Shading for Mixed Reality

Martin Knechta, Christoph Traxlerb, Oliver Mattauscha, Michael Wimmera

aVienna University of Technology, Institute of Computer Graphics and Algorithms, Favoritenstrasse 9-11, A-1040 Vienna, Austria
bVRVis - Center for Virtual Reality and Visualization Research, Ltd., Donau-City-Strasse 1, A-1220 Vienna, Austria

Abstract

In this paper we present a novel plausible rendering method for mixed reality systems, which is useful for many real-life applica-
tion scenarios, like architecture, product visualization or edutainment. To allow virtual objects to seamlessly blend into the real
environment, the real lighting conditions and the mutual illumination effects between real and virtual objects must be considered,
while maintaining interactive frame rates. The most important such effects are indirect illumination and shadows cast between real
and virtual objects.

Our approach combines Instant Radiosity and Differential Rendering. In contrast to some previous solutions, we only need
to render the scene once in order to find the mutual effects of virtual and real scenes. In addition, we avoid artifacts like double
shadows or inconsistent color bleeding which appear in previous work. The dynamic real illumination is derived from the image
stream of a fish-eye lens camera. The scene gets illuminated by virtual point lights, which use imperfect shadow maps to calculate
visibility. A sufficiently fast scene reconstruction is done at run-time with Microsoft’s Kinect sensor. Thus a time-consuming manual
pre-modeling step of the real scene is not necessary. Our results show that the presented method highly improves the illusion in
mixed-reality applications and significantly diminishes the artificial look of virtual objects superimposed onto real scenes.

Keywords: mixed reality, real-time global illumination, differential rendering, instant radiosity, reconstruction, Microsoft Kinect

1. Introduction

Figure 1: This figure shows a mixed reality scenario where a virtual table lamp
illuminates the real and virtual objects causing indirect shadows from the Bud-
dha on a real vase. The scene is reconstructed during run-time and rendered at
17.5 fps.

Mixed reality is an attractive and exciting way to present
virtual content in a real context for various application domains,
like architectural visualizations, virtual prototyping, marketing
and sales of not yet existing products and edutainment systems.
These kinds of application scenarios demand a believable real-
istic appearance of virtual objects, providing a perfect illusion
for human visual perception. Unfortunately this requirement is

not met in common mixed reality systems, where the composed
images look disturbingly artificial. One major reason for this is
that real illumination conditions and the mutual shading effects
between virtual and real objects are completely ignored.

In this paper we present a global illumination (GI) render-
ing system that is designed to calculate the mutual influence
between real and virtual objects. The aim of the GI solution is
to be perceptually plausible without the ambition to be phys-
ically accurate. In the comprehensive classification of Jacobs
and Loscos [1] our approach would be placed in the “Common
Illumination and Relighting” category. Besides calculating the
influence between real and virtual objects, we are also able to
relight the scene by virtual light sources.

There are some previous methods [2, 3] which are able to
take indirect illumination into account. However they need a
computationally expensive preprocessing step or are not feasi-
ble for real-time applications. An important aspect of our work
is an extension of Instant Radiosity to handle real-world ob-
jects. Instant Radiosity has the advantage that it does not need
any pre-computation and therefore can be easily used for dy-
namic scenes where object positions change or the illumination
is varied through user interaction.

To capture the surrounding environment, we use a fish-eye
camera and the Microsoft Kinect Sensor to create a representa-
tion of the real scene on the fly. Figure 1 gives an impression on
how our method handles indirect illumination in mixed reality
scenarios.

In this paper, we extend a previous Differential Instant Ra-
diosity system [4] with the following novel contributions:

Preprint submitted to Computers & Graphics April 19, 2012



• Inconsistent color bleeding is avoided due to a new type
of virtual point lights (VPLs).

• Double shadowing artifacts due to unsupported light paths
are eliminated.

• The geometry of the real scene is reconstructed at run-
time.

2. Related Work

Our approach is based on several areas of computer graph-
ics: image-based lighting, real-time global illumination, com-
positing of real and rendered image data, and real-time scene
reconstruction.

2.1. Image-Based Lighting
Most approaches that deal with illumination in mixed-reality

applications use an environment map to simulate the incident
illumination. There are basically two types of methods to ac-
quire the environment map: outside-in and inside-out methods.
Outside-in methods use a camera to take photos or a video
stream of a chrome sphere. This chrome sphere reflects the
surrounding scene and can be used as an environment map [5,
6, 7, 8]. The inside-out methods use a camera to capture the
surrounding illumination. Ritschel and Grosch [9] used a HDR
video camera to capture the surrounding illumination. Sato et
al. [10] as well as Korn et al. [11] used a stereo vision inside-out
approach to calculate the environmental radiance distribution
and to reconstruct the environment.

Once the environment is captured, a fast method is needed
to extract light sources from the environment map. Several
methods exist to detect light sources in the environment map
efficiently according to some importance sampling [12, 13, 14].
To our knowledge these methods use the CPU to generate the
samples. We use hierarchical warping from Clarberg et al. [15],
since the algorithm works with mipmap levels of the luminance
probability map and thus allows us to perform importance sam-
pling directly on the GPU.

2.2. Real-time Global Illumination Algorithms
Real-time global illumination (RTGI) is a very active area

of research. This section will give a brief overview on current
developments.

Instant Radiosity was introduced by Keller [16] in 1997.
The idea is to place so-called virtual point lights (VPLs) in
the scene to approximate global illumination. This method is
particularly suitable for RTGI on current graphics hardware, as
it does not need any complex pre-computations of the scene.
Dachsbacher and Stamminger [17] extended standard shadow
maps to so-called reflective shadow maps, where every pixel
was treated as a light source. By adaptively sampling the shadow
map to create VPLs, they were able to calculate indirect illumi-
nation. However, the indirect illumination computation did not
contain any visibility calculation. Laine et al. [18] developed a
real-time Instant Radiosity method that caches the shadow map
for each VPL over several frames. This way only a few shadow

maps need to be recreated every frame, thus achieving real-time
frame rates. However, moving objects cannot influence indirect
visibility calculation. In 2008, Ritschel et al. [19] introduced
the concept of imperfect shadow maps (ISMs). The idea is to
represent the scene as a sparse point cloud and use this point
cloud to generate a shadow map for every VPL. Using this ap-
proach it is possible to create hundreds of shadow maps per
frame, allowing for completely dynamic scenes.

There exist several other methods to compute interactive
global illumination. We only covered those related to Instant
Radiosity as this is the method used in our approach. For a
comprehensive overview we refer to the STAR of Ritschel et
al. [20].

2.3. Merging Real and Virtual Scenes
Nakamae et al. [21] were the first to concentrate on merging

real and virtual scenes. They had a simple geometry for the real
scene and information about the date and time when the back-
ground picture was taken. From this information, they could
place the sun to calculate shadows cast from virtual objects.
Fournier et al. [22] used a progressive radiosity algorithm to
compute global illumination. Depending on whether the object
of a patch belongs to a virtual or real object they changed the
calculation behavior. Drettakis et al. [23] extended this method
to dynamic virtual objects. Debevec [5] introduced Differential
Rendering, which is based on the work of Fournier et al. [22].
Differential Rendering greatly reduces the error that is intro-
duced by BRDF estimation, at the cost of having to compute
the global illumination solution twice.

Grosch [2] used a variation of photon mapping in combi-
nation with Differential Rendering to merge virtual and real
scenes. However, the proposed method does not achieve real-
time frame rates. Pessoa et al. [24] used an environment map
for each object in an augmented reality scene to simulate mutual
light interaction. While performance scaling is an issue when
more objects are placed in the scene, they got very impressive
results for simple scenes and were able to simulate many illu-
mination effects.

2.4. Real-time scene reconstruction
The Microsoft Kinect sensor was released in the year 2010.

Since then a large number of researchers focused on various
ways to use this very cheap commodity device. The Kinect
sensor is capable to deliver a color and a depth stream at a res-
olution of 640x480 pixel at 30 Hz.

Recently a method called Kinect Fusion was proposed by
Shahram et al. [25] and Newcombe et al. [26]. Their method is
able to track the camera pose and to reconstruct the environment
during run-time. By using a tight feedback loop system, new
depth values are constantly added to a voxel volume used for
reconstruction and tracking. Lieberknecht et al. [27] proposed
another tracking and meshing method. Their approach pro-
duces a polygon mesh reconstruction of the real scene. Since
our framework is based on a deferred rendering system we do
not necessarily need a triangle mesh, as long as we can feed
the data from the Kinect sensor into the geometry buffer (see
Section 4.3).

2



Lensing and Broll [28] proposed a method to enhance the
quality of the raw depth map from the Kinect sensor. To our
knowledge some parts of their algorithm are done on the CPU,
while our reconstruction method runs entirely on the GPU. They
reach an update rate of 11 frames per second.

3. Differential Instant Radiosity

3.1. Differential Rendering
Mixing real with virtual objects requires the calculation of

a global illumination solution that takes both virtual and real
objects into account. In our approach, we reconstruct the real
scene during run-time (see Section 4). The idea of Differential
Rendering [22, 5] is to minimize the BRDF estimation error by
calculating only the “differential” effect of virtual objects, leav-
ing the effect of the original BRDFs in the scene intact. This
requires calculating two global illumination solutions (Lrv &
Lr): one using both virtual and real objects, and one using only
the real objects. The final image is created by adding the dif-
ference ∆L between these two solutions to the captured camera
image.

One might be inclined to calculate the difference between
Lrv and Lr directly and add it to the captured real image. How-
ever, since the captured image has only low dynamic range, we
first need to apply tone mapping (performed by function T M),
which requires a complete image as input. Therefore two com-
plete images, including both direct and indirect illumination,
need to be tone mapped before calculating the difference:

∆L = T M(Lvr) − T M(Lr)

We first focus on direct illumination and one-bounce global
illumination, which in terms of Heckbert’s [29] classification
of light paths corresponds to LDE- and LDDE-paths, where L
is the light source, D is a (potentially) glossy reflection at an
object in the scene, and E is the eye. In Section 3.6 we ex-
tend the method to be able to calculate multiple bounce global
illumination.

For a mixed-reality setting, the idea is that the illumination
of the real scene Lr is calculated by only considering the (out-
going) contribution Lo of those paths where all elements are
real, i.e., LrDrDrE paths. The contributions of all other paths,
including those with a virtual light source (LvDDE), a bounce
on a virtual object (LDvDE) or a virtual object to be shaded
(LDDvE), only count for the combined solution Lrv.

The solutions Lr and Lrv could be calculated separately us-
ing LrDrDrE and general LDDE paths respectively. However,
depending on how paths are generated, this might be very inef-
ficient, and might also lead to artifacts if different paths are cho-
sen for the two solutions. Instead, we assume that the paths are
already given, and for each path, we decide whether it should
count for Lr or Lrv or both.

3.2. Instant Radiosity
In order to achieve real-time performance, we use Instant

Radiosity to approximate global illumination. Instant Radios-
ity uses virtual point lights (VPLs) to propagate light from the

light sources. VPLs are created as endpoints of LD (for the first
bounce) or DD (for subsequent bounces) path segments. The
VPLs are used to shade every visible pixel on screen using a
DD path, so the paths creating them (previous LD or DD seg-
ments) are reused multiple times.

Figure 2: This figure shows the algorithm outline. The raw depth values from
the Kinect sensor are preprocessed to improve the quality of the real scene
reconstruction. Furthermore a G-Buffer is created and afterwards split to reduce
shading costs. The primary light sources generate VPLs from which ISMs
are created. The VR- and R-Buffers are created in parallel, while the shading
computation is performed only once. After some finishing steps like merging,
adding direct illumination and tone mapping, the video frame is added to the
difference between the VR- and R-Buffers.

Figure 2 shows the main steps of a differential instant ra-
diosity rendering system. The renderer is set up as a deferred
rendering system and therefore one of the first steps is to render
the scene from the camera and store all necessary information
like position and normals in the so-called geometry buffer (G-
buffer). The G-Buffer is then split to save shading costs (see
Segovia et al. [30] for more details). The next step is to create
VPLs and store them in a so-called VPL-Buffer. Depending on
the primary light source type, the VPLs are created in different
ways (see Section 3.7).

After the two ISMs are created and illumination from the
VPLs is calculated, the remaining steps are to perform tone
mapping and add the result to the video frame using differential
rendering.

3.3. Differential Instant Radiosity

In Instant Radiosity, the DD-path from a VPL to a surface
point (and likewise the LD-path from a light source to a sur-
face point for direct illumination) is potentially blocked, and
therefore, some of these paths have to be discarded after a visi-
bility test carried out with shadow mapping. In a mixed-reality

3



setting, the type of blocker for these bounces plays an impor-
tant role when deciding to which GI solution a given light path
should be added. Suppose we have light paths as shown in Fig-
ure 3. Illustration a) shows an LrbvDrE path and illustration b)
an LrDrbvDrE path. In this notation, bv is some virtual blocking
geometry. So for Lr, both light paths are valid, since virtual ob-
jects, including virtual blocking geometries, are not taken into
account. However, the result is invalid for Lrv since virtual ob-
jects are taken into account and therefore the light path does not
exist.

If we substitute the virtual blocking geometry bv with a real
blocking geometry br, then the light paths cannot exist in both
solutions and are simply ignored. So far a simple visibility
test using shadow mapping and an additional flag whether the
blocking geometry belongs to a real or a virtual object would
be sufficient. However, if we have a path setup as shown in Fig-
ure 4, naive shadow mapping does not deliver enough informa-
tion to correctly discard both light paths since only the virtual
blocking geometry is visible to the system. In a previous Differ-
ential Instant Radiosity system [4], double shadowing artifacts,
as shown in Figure 5, occurred because the method could only
handle either a real or a virtual blocking geometry. Two or more
blocking geometry parts behind each other were not supported.

To overcome this limitation, we propose to use two shadow
maps for real primary light sources and for the VPLs. Real pri-
mary light sources create two reflective shadow maps (RSMs) [17].
One RSM always stores only the real objects and the other RSM
only the virtual objects. By having two RSMs, the visibility test
needs two shadow map lookups, but double shadowing artifacts
are avoided. Note that for performance reasons, two RSMs are
only created for real primary light sources like a spot light. If
the spot light is set to be virtual, no double shadowing may oc-
cur anyway and using one RSM as described in Knecht et al. [4]
is sufficient.

Since VPLs can be placed on real and on virtual objects, we
always need two imperfect shadow maps [19].

Figure 3: a) Illustrates a virtual blocker in the LrDr segment. The virtual
blocker casts a shadow from direct illumination. b) Illustrates a path that has
a virtual blocker between the DrDr segment. Here the shadow results from
one-bounce indirect illumination.

Figure 4: Illustration a) and b) show situations where naive shadow mapping
cannot handle correct visibility. In contrast to [4], our method is able to cor-
rectly evaluate these paths.

Figure 5: The spotlight and the blue box are real objects and therefore a real
shadow is cast onto the desk. In Knecht et al. [4] the reflective shadow map of
the light source only had information about the front most object – the green
virtual cube, which resulted in double shadowing artifacts.

So far only blocking geometry was taken into account to de-
cide to which GI solution the light path should be added. How-
ever, it also depends on whether the intersections of a light path
belong to real or to virtual objects.

Suppose we have a real spot light that illuminates a virtual
green cube and a real blue cube placed on a real desk as shown
in Figure 6.

Figure 6: Illustration of an augmented scene with a real desk, a virtual green
cube, a real blue cube and a real spot light illuminating the scene. VPL 1 will
cause color bleeding from the desk onto the green cube - VPL 2 from the green
cube onto the desk. Ray R illustrates the shadowing caused by the virtual green
cube. Light arriving at ray R causes real color bleeding from the real blue cube
onto the real desk. VPL 3 cancels that color bleeding out. Note that VPL 3 only
illuminates real objects.

Here the inserted virtual green cube causes four types of
light interaction. First, light that hits the real desk causes color
bleeding on the virtual green cube (VPL 1, LrDrDvE). Second,
light that hits the virtual green cube causes color bleeding on the
real desk (VPL 2, LrDvDrE). Third, the virtual green cube casts
a shadow on the desk illustrated by ray R (LrbvDrE). Fourth,
the real light arriving along ray R in the real scene causes real
color bleeding on the real desk, thus a new VPL is placed on
the real blue cube (VPL3 LrbvDrE). This will eliminate the
real color bleeding effect during the differential rendering step.

Suppose we shade a point on the virtual green cube, illu-
minated by VPL 1. We have to decide if the path contribution
should be added to Lrv and/or to Lr. The spotlight is real, VPL

4



1 is placed on the real desk and the shaded point corresponds
to a virtual object (LrDrDvE). In this case the result gets added
to Lrv but not to Lr as there is a virtual object in the light path.
When shading a point on the real desk, which gets illuminated
by VPL 2, the result must again be added to Lrv but not to Lr,
because VPL 2 is placed on a virtual object (LrDvDrE).

On the other hand when a point on the real desk is shad-
owed by the virtual green cube (LrbvDrE), the outgoing radi-
ance must be added to Lr but not to Lrv.

VPL3 (LrbvDrE) is a special new type of virtual point light
source. VPL3 will only be used to illuminate real objects. For
virtual objects, this light source is completely ignored. The
placement and special treatment of VPL3 overcomes the arti-
fact of inconsistent color bleeding, a limitation of [4]. The light
caused by VPL3 will be added only to the solution Lr. After
differential rendering is applied, that light will cancel out the
real color bleeding which is visible in the video frame.

3.4. Direct Bounce Computation

The direct lighting contribution (LDE paths) is calculated
for primary light sources, i.e., using a spot light.

Let r(x) be a function that returns 1 if element x is asso-
ciated to a real object and 0 if not, where x can be one of the
following: a primary light source, a VPL, a surface point or a
light path (see Section 3.6).

• For a primary light source pl, r(pl) is stored with the light
source.

• For a VPL, r(VPL) is set when the VPL is created (see
Section 3.7).

• For the point to be shaded p, r(p) is taken from the object
definition.

Depending on visibility, direct light paths LDE need to be
added to Lr and/or Lrv. To perform the visibility test, we define
the shadow test str(pl, p) as a shadow map lookup against real
shadow casters and stv(pl, p) as a shadow map lookup against
virtual shadow casters for a given primary light source. Lo is
the unobstructed radiance from the surface point p in viewing
direction. For a given surface point p in the G-Buffer, the illu-
mination is calculated as follows:

Lpl
rv = Lpl

o strv(pl, p) (1)
Lpl

r = Lpl
o r(pl)r(p)str(pl, p) (2)

strv(pl, p) = min(str(pl, p), stv(pl, p)) (3)

The contributions for LDE paths are simply summed up as
follows for each primary light source:

Lrv =
∑

pl

Lpl
rv (4)

Lr =
∑

pl

Lpl
r (5)

3.5. Indirect Bounce Computation

For indirect light bounces, we need to calculate Lr and Lrv

for DDE paths, i.e., for a point p illuminated by the ith VPL
which is placed at the end of light path segment LD. To per-
form the visibility test for the ith VPL, the shadow test func-
tions are used in a similar way as in the previous section, but
the imperfect shadow maps related to the ith VPL are used. Lo

is the unobstructed radiance, i.e., without taking visibility for
the VPL into account. ir(VPL) returns 1 if the VPL should
only illuminate real objects and 0 otherwise (see Section 3.3).
Then, for the ith VPL,

Li
rv = Li

o(1 − ir(VPLi))strv(VPLi, p) (6)
Li

r = Li
or(pl)r(VPLi)r(p)str(VPLi, p) (7)

strv(vpl, p) = min(str(vpl, p), stv(vpl, p)). (8)

The contributions for DDE paths are summed up in a simi-
lar way as shown in Equations 4 & 5.

3.6. Multiple Bounces

Extending Differential Instant Radiosity to multiple bounces
is straightforward. Since in Instant Radiosity, each light bounce
is simulated by one VPL, we have to forward the information
of the previous light path to the next VPL. In this way, it is pos-
sible to calculate the influence on the Lrv and Lr solutions at the
last bounce correctly.

There are two flags that are of interest: First, a flag r(x)
whether the previous light path only contained real objects and
second, ir(VPL), whether only real objects should be illumi-
nated by the given light path. Imagine that light bounces off

several times from real surfaces coming from a real primary
light source illuminating a real object. In this case the whole
light path interacts only with real objects and the same amount
of light will be added to Lrv and Lr. However, if there is only
one bounce on a virtual object, as illustrated by the green ob-
ject in Figure 7, the final influence on Lrv and Lr differs. The
forwarding of the changed flag r(x) is illustrated by the change
of the light path color after VPL 1.

Figure 7: After encountering the first virtual object (shown in green), the light
path is flagged to contain virtual objects (also visualized in green). Note that
this information is forwarded to subsequent VPLs.

The flag about the primary light source pl will be substi-
tuted by a flag that indicates if the previous path x̄ included any
virtual objects or a virtual primary light source. When a new

5



VPL is created from a previous one the flag is calculated as
follows:

x̄ = r(x̄prev)r(pVPL) (9)
x̄0 = r(pl) (10)

where x̄prev indicates if the path to the preceding VPL only
belonged to real objects and pVPL indicates whether the new
VPL is created on the surface of a real or a virtual object. Once
a virtual object was in the light path, the path flag will always
be 0. The new illumination equation just uses x̄ instead of pl.

Furthermore the flag ir(VPL), which indicates whether only
real objects should be illuminated, is directly copied without
modification to the next VPL. Note that the new VPL must be
placed on a real object (r(pVPL) = 1) if the previous VPL has
the flag set.

3.7. Creating VPLs
So far we have assumed that the light paths are already

given and thus the VPLs are already placed in the scene. In
our system all VPLs are created by the primary light sources
and there are three types currently supported: A spotlight, an
environment light and a special primary light source that per-
forms one light bounce.

The spot light source behaves like a standard spot light ex-
cept that it can be set to be a real or virtual light source. If the
spot light is set to be virtual, it stores a single reflective shadow
map that is rendered from the point of view of the light source.
Beside the depth, which is used for standard shadow mapping,
it stores the surface color, the material parameter, the normal
of the surface and an importance factor similar to the reflective
shadow maps (RSM) [17]. When VPLs are created, the im-
portance factor is used to perform importance sampling on the
RSM as proposed by Clarberg et al. [15]. After a proper sample
position has been found, the information from the RSM is used
to create a new VPL in the VPL-Buffer.

However, if the spot light is set to be real, we have to be
aware that we need to cancel out inconsistent color bleeding.
Figure 6 illustrates this effect with VPL 3. In this case a virtual
object is in front of the real one and it would not be possible
to place VPL 3 there if only one RSM were used. So if the
spot light is set to be real, two RSMs are created each frame.
The spot light however has only a certain amount of VPL slots
available in the VPL Buffer. Therefore we need a proper way to
distribute the VPLs over the two RSMs. As a metric we use the
number of pixels covered by real or respectively virtual objects
in the RSMs. Their sum is normalized to have a probability
value. A pseudo-random Halton value is then used to decide
which of the RSMs should be used to create a new VPL. The
flag r(VPL) is set with respect to the chosen RSM. Note that
since the VPLs have a given intensity, but only a subset of VPLs
are applied on either of the RSMs, we must compensate their
intensity according to the distribution of VPLs between the two
RSMs.

The environment light source uses the input image from a
fish-eye lens camera to capture the surrounding illumination. It

does this by placing virtual point lights on a hemisphere around
the scene center. Figure 8 shows the virtual point lights placed
on the hemisphere. To get a better approximation, the VPLs are
first importance-sampled according to the illumination intensity
using hierarchical warping [15]. Since the environment light
source uses the image from the camera, it is set to be a real
light source. Note that the environment light is different to the
spot light as it uses the VPLs for direct illumination.

Figure 8: Illustration of incident illumination from the surrounding environ-
ment captured with the fish-eye lens camera. The red dots show the positions
of the VPLs

The third primary light source is a special type since it per-
forms one light bounce. The idea behind it is to use the geom-
etry itself as light sources, i.e., the VPLs already placed in a
previous bounce.

In order to do so, the VPLs from the VPL-Buffer of the pre-
vious frame are used to generate new VPLs, and importance
sampling ensures that stronger VPLs are used more often than
weaker ones. The new VPLs to be created must be placed on
the surface of objects in the scene. Therefore we use the point
clouds normally used for ISM creation to find possible new
VPL positions. For each point in the point cloud representa-
tion, three steps are performed: First, the point is assigned to a
VPL slot in the new VPL-Buffer. Second, a VPL from the pre-
vious frame that illuminates the point is chosen as source VPL.
We do this by using pseudo-random Halton values and the pre-
viously mentioned importance sampling. The third step is to
calculate a glossy light bounce from the source VPL onto the
selected point. For visibility testing, the ISM textures from the
previous frame are used, since the source VPL is also from that
frame.

All three steps are performed on the graphics card, and only
a limited number of VPL slots are available to simulate a light
bounce. Therefore several points from the point cloud repre-
sentation are mapped into the same VPL slot. However only
one VPL can be stored per slot and we are only interested in the
VPL candidate which would have the highest influence respec-
tively the highest outgoing radiance compared to all other VPLs
assigned to the same VPL slot. We can ensure this by writing
out a depth value for each new VPL candidate that is related to
its maximum outgoing radiance. Due to z-buffering, only the
strongest VPL candidate will survive. Note that the compare

6



function of the depth buffer must be reversed.

4. Real Scene Reconstruction

Differential rendering is a good method to add virtual ob-
jects into a real scene, because the errors of the BRDFs only
appear in the difference and not in the absolute values of the
final image. However, two GI solutions (Lr and Lvr) are needed
and to calculate those the geometry and the BRDFs of the real
scene must be known. In previous work [4], the real geometry
was modeled in a preprocessing step. This is very time consum-
ing and as soon as the real scene changes, the model needs to be
updated. Therefore we propose a method that reconstructs the
real scene during runtime, which highly increases its usefulness
and ease of use.

4.1. Microsoft Kinect

The Microsoft Kinect device is a very low-cost video and
depth sensor. Figure 9 shows the two input streams, an RGB
color image and the depth image. Both streams are delivered
in a resolution of 640 × 480 @ 30 Hz. The input of the depth
image is very noisy, and at depth discontinuities, no values are
acquired at all. Therefore the unprocessed depth values cannot
be used directly to estimate positions and normals.

Figure 9: The left image shows the RGB color input stream and the right image
shows the depth values of the Microsoft Kinect sensor.

4.2. Position and Normal Estimation

In our approach, we perform a warping and merging step
before the positions and normals are estimated. In order to re-
duce the noise and fill in holes, we need more information than
available from just one frame. Therefore the information from
previous frames is reused. The following steps are performed
to get better position and normal estimations:

• Warp depth map from previous frame into new camera
view using forward projection

• Merge the new depth data with the warped depth

• Estimate normals based on new depth map

For the warping step, a triangle mesh with 640 × 480 ver-
tices is created. The vertices store texture coordinates (u, v) for
lookup into the depth/weight buffer. The camera pose Tcurrent

is estimated with Studierstube Tracker and the pose of the last
frame Tprev is simply cached.

First, for each vertex, the according depth and weight values
from the depth/weight buffer of the previous frame are looked
up. Then the (u, v, depthprev) triple must be back-projected to
homogenized view-space coordinates p using the inverse pro-
jection function π−1.

p = π−1(u, v, depthprev) (11)

These positions are in the view space of the previous frame
(Tprev) and therefore need to be transformed into the viewing
coordinate system of the current frame (Tcurrent). Equation 12
calculates the warping transformation Twarp and Equation 13
warps a given point p from the old viewing coordinate system
into the current viewing coordinate system.

Twarp = T−1
prevTcurrent (12)

p̂ = Twarp(p) (13)

Finally the depth value is calculated by applying the projec-
tion function π on the warped point p̂ as shown in Equation 14.

depth = π(p̂).z (14)

Note that parts of the warped depth mesh may overlap, but
visibility will be correctly resolved in the z-buffer with the depth
test enabled. However, certain vertices or triangles may have in-
valid depth values or be degenerated (edge length larger than a
certain threshold) and are therefore discarded.

The render target for the warping step stores two float values
per pixel. One for the warped depth value and one for a weight-
ing factor that gets applied in the merging step. The weight
values which were looked up from the depth/weight buffer of
the previous frame are simply copied into the render target.

The second step is to merge the warped depth values with
the newly available depth values from the Kinect. Our approach
for merging the new depth values and weighting values is sim-
ilar to Newcombe et al. [26]. If both depth values are valid
but their difference exceeds a certain threshold (which indicates
that they belong to different surfaces), only the new depth value
will be written into the render target. After the merging step a
depth map is available that has lower noise and less holes than
the raw depth input of the Kinect sensor.

In the last step, the normals are estimated. For this, the
world-space positions are calculated with respect to the projec-
tion matrix of the Studierstube Tracker. Those positions are
stored in a separate position map. Then the normals are calcu-
lated as follows:

N(u, v) = (V(u + 1, v) − V(u, v)) × (V(u, v + 1) − V(u, v))

where (u, v) are the screen-space coordinates and V(u, v) the
world space position stored in the position map at (u, v). Due
to the reuse of previous data, the normal estimation is far bet-
ter than just using the current input of the Kinect sensor (see
Section 6 for a comparison).

7



4.3. Kinect Data Integration
The acquired data of the Kinect sensor must be tightly inte-

grated into the differential rendering system. It must be added
into the G-Buffer and should be usable for depth-map creation.
Adding it into the G-Buffer is relatively straight forward. The
world-space position map and the normal map are directly ren-
dered into the G-Buffer. Furthermore the G-Buffer must be
filled with Phong BRDF estimation parameters of the real scene’s
materials. However, we have not performed any Phong BRDF
estimation so we must set the diffuse intensity (DI), specular
intensity (S I) and specular power (S P) to values that are at least
a usable approximation. The specular component is set to zero
and the diffuse intensity is set to the input image color from the
camera stream of the Kinect sensor. Although these RGB val-
ues are a convolution with the incident light, they can be used
to a certain degree for our purposes. Note that the error in the
BRDF estimation for real objects only influences the differen-
tial effect and not the absolute values in differential rendering.
However, the error can still get arbitrarily large.

As described in Section 3.3, imperfect shadow maps are
used for visibility tests with the VPLs. Therefore all the ob-
jects need to have a point cloud representation available. In the
case of the Kinect sensor data, we use a vertex buffer with the
doubled size of 1280 × 960 vertices to have enough splats for
the ISMs. For each vertex lookup, coordinates are stored that
are used to lookup the position map. Furthermore, each vertex
gets assigned a unique id by the graphics card while render-
ing. During creation of the ISMs, the vertex buffer is rendered.
In the vertex shader the world space position is looked up and
based on the unique vertex id a VPL is chosen to be the target
mapping position. According to the chosen VPL and the world
space position, the vertex is mapped onto the ISM. A geometry
shader is used to create a splat that aligns it in tangent space to
the surface (see Knecht et al. [4] for more details). By using
a sufficient splat size, the imperfect shadow maps are tightly
filled with depth values from the real scene.

Finally the filtered Kinect sensor data must be integrated
into the reflective shadow maps of the spot light. For that, a
640 × 480 vertex buffer is used with an index buffer that con-
nects the vertices together to render small triangles in a similar
way as in the depth warping pass. In the geometry shader, the
vertex positions of a triangle are looked up using the position
map in the same way as it is done for the ISM creation step.
However, this time degenerated triangles must be deleted be-
fore they are rasterized. They may occur if the positions are
invalid. Such cases are easily recognized since those vertices
end up at (0, 0, 0) in our framework. So if any vertex in the
triangle has a position at the origin the triangle gets discarded.
Note that this kind of shadow-map creation can lead to artifacts
during visibility tests since the vertices have a limited validity
for a different point of view than the position of the camera.

5. Limitations

Our method has a couple of limitations that either lower
the quality of the final results or limit the range for which the
system can be applied for.

First, since we reduce the reconstruction problem to screen-
space rather than to a volume-based approach like in Newcombe
et al. [26], the system is not aware of any geometry that is not
visible to the camera. While this results in fast execution, the
user might observe artifacts when interacting with virtual spot
light sources. Imagine that the spot light illuminates a scene
from approximately 90 degrees of the observers view. Then
shadow calculations may lead to wrong results since a wall fac-
ing the spotlight is not necessarily visible to the camera.

The reconstruction method reuses data from previous frames
and therefore temporal artifacts appear when interacting with
the scene. Although outliers are rejected during the reprojec-
tion phase, they cannot be filtered out completely.

In the current integration of the Kinect sensor data, the ge-
ometry data is rendered into the G-Buffer. Beside geometry
data like depth or normals, the G-Buffer also stores the material
parameter (DI , S I and S P) needed for the Phong BRDF model.
However, there is no BRDF estimation performed for the real
scene geometry. As an approximation for the parameters, the
specular component is set to zero. For the diffuse intensity DI ,
the current RGB video frame of the Kinect sensor is used. This
is a very rough approximation and a better estimation method
should be targeted in future work.

In Newcombe et al. [26], the depth data from the Kinect
device is also used to estimate the new pose of the camera. In
comparison we are using BCH markers that are tracked using
Studierstube Tracker. It would be interesting to have a mark-
erless tracking system so that every kind of scenario could be
used as an augmented reality setup. Furthermore it would be in-
teresting to have object tracking as proposed by Park et al. [31].

6. Results

All results were rendered at a resolution of 1024x768 pixels
on an Intel Core2 Quad CPU Q9550 at 2.8GHz with 8GB of
memory. As graphics card we used a NVIDIA Geforce GTX
580 with 1.5GB of dedicated video memory. The operating
system is Microsoft Windows 7 64-bit and the rendering frame-
work is developed in C#. As graphics API we use DirectX 10
in conjunction with the SlimDX library. Our system uses the
Microsoft Kinect sensor for see-through video and depth ac-
quisition and an uEye camera from IDS with a fish-eye lens to
acquire the environment map. Our tests took place in an of-
fice with some incident light through a window. Furthermore
we have a small pocket lamp to simulate some direct incident
light. We use Studierstube Tracker for tracking the Kinect and
the position of the pocket lamp. Unless otherwise mentioned,
we use 256 virtual point lights and represent the scene using
1024 points per VPL. The imperfect shadow map size for one
VPL is 128x128 and we split the G-Buffer into 4x4 tiles.

We also want to mention that the Kinect sensor is too big
and heavy for practical usage on an HMD. However, we think
that this device could get much smaller in the future and there-
fore will become feasible in real usage scenarios.

8



6.1. Kinect Data Filtering

In Section 4 we described how the depth map is filtered to
gain higher quality position and normal maps. Figure 10 com-
pares the normal estimations. The filtered normals on the right
have lower noise and fewer holes on flat areas and therefore the
final illumination results are of higher quality. The drawback
of the screen-space approach is that areas which just got disoc-
cluded from the previous frame will have low-quality depth val-
ues, i.e., due to interpolation at a depth discontinuity, and there-
fore also wrong normal estimations. For these areas it takes
some frames until the correct normal is estimated again.

Depending on the shutter settings of the Kinect sensor and
the intensity of the real spotlight, it sometimes happened that
no depth values could be evaluated in the center of the spot.
Furthermore if the sun shines directly onto the scene, large areas
cannot be measured by the Kinect sensor since it is too bright.
This results in visual artifacts, since there is simply no geometry
rendered into the G-Buffer in those areas.

Figure 10: Left: Shows the normal estimation based on the raw depth values
from the Kinect sensor. Note that the normal map suffers from noise and holes,
since no depth values are available. Right: Shows the normal estimation based
on the filtered depth values, resulting in higher quality normal estimations.

6.2. Rendering Results

Figure 11 shows a virtual Cornell box and a real white box
illuminated by the captured environment. The Cornell box shad-
ows the real box. The image is rendered at 18.0 fps with multi-
ple bounces enabled.

Figure 11: Virtual object shadows a real box. Image rendered at 18.0 fps.

Figure 12 shows the same scene with additional light from
a real pocket lamp. It points towards the virtual Cornell box
causing indirect illumination towards the real box. Note the red
color bleeding on the box and the desk. The same illumina-
tion effect but reversed is shown in Figure 13. Here the pocket
lamp illuminates the real box, again causing indirect illumina-
tion. Our system is capable of handling these different cases in
a general way. Both images are rendered at 18.0 fps.

Figure 12: The real pocket lamp illuminates the virtual Cornell Box and causes
red color bleeding on the desk and the real box.

Figure 13: The real pocket lamp illuminates the real box causing indirect illu-
mination onto the virtual Cornell Box.

In Knecht et al. [4], double shadowing and inconsistent color
bleeding artifacts occurred as shown in Figure 14. The pro-
posed extensions to Differential Instant Radiosity overcome these
issues, resulting in images as shown in Figure 15. Note that
the dark shadow behind the real box is removed. Furthermore
note the slight darkening of the area near the bright spot of the
pocket lamp. Our framework cancels out indirect color bleed-
ing caused by the real box illuminated by the real pocket lamp.
Compared to the previous method, the same amount of objects
is rendered for shadow map generation, they are just rendered
into different render targets. Hence our new approach causes

9



only a small overhead due to the additional shadow map lookup.
In numbers this means that the average frame rate for Figure 14
(with artifacts) is at 18.4 fps and for Figure 15 (no artifacts) is
at 18.2 fps.

Figure 14: Double shadowing and inconsistent color bleeding artifacts. The
dark spot on the left is due to insufficient visibility tests. Note the slight indirect
illumination of the bright spot onto the desk and the green wall of the real box.
The method from Knecht et al. [4] could not avoid these artifacts.

Figure 15: Our method avoids double shadowing and inconsistent color bleed-
ing artifacts. Compared to Figure 14, there is no dark spot in the left part of
the image. Furthermore the inconsistent color bleeding on the desk and the real
green box is canceled out.

7. Conclusion and Future Work

We introduced a novel method to render mixed-reality sce-
narios with global illumination at real-time frame rates. The
main contribution is a combination of the Instant Radiosity al-
gorithm with Differential Rendering supporting more complex
light-path combinations. By adding information in various lo-
cations of the rendering pipeline, it is possible to distinguish
between shading contributions from the real scene and from the
combined real and virtual scene.

Figure 16: Left: Zoom-in of Figure 14 on incorrect color bleeding on the green
box (due to illumination from a spot light which is occluded by a virtual object).
Right: Zoom-in of Figure 15. Our new method correctly accounts for occlusion
and cancels out the color bleeding.

Thus, our method is capable of relighting the real scene and
illuminating the virtual objects in a general way by either us-
ing real or virtual light sources. The Microsoft Kinect sensor
is used to reconstruct the real scene during run-time, and there-
fore no time-consuming pre-modeling step is necessary any-
more. The results show that our method is able to simulate the
mutual influence between real and virtual objects.

In the future, we want to improve the overall quality by esti-
mating the BRDFs of the real scene instead of using an approxi-
mation. Furthermore we want to support reflective or refractive
objects in the current framework.

References

[1] Jacobs, K., Loscos, C.. Classification of illumination methods for mixed-
reality. Computer Graphics Forum 2006;25:29–51.

[2] Grosch, T.. Differential Photon Mapping - Consistent Augmentation of
Photographs with Correction of all Light Paths. Trinity College, Dublin,
Ireland: Eurographics Association; 2005, p. 53–56.

[3] Grosch, T., Eble, T., Mueller, S.. Consistent interactive augmentation of
live camera images with correct near-field illumination. In: Proceedings
of the 2007 ACM symposium on Virtual reality software and technology.
VRST ’07; New York, NY, USA: ACM; 2007, p. 125–132.

[4] Knecht, M., Traxler, C., Mattausch, O., Purgathofer, W., Wimmer,
M.. Differential instant radiosity for mixed reality. In: Proceedings of the
9th IEEE International Symposium on Mixed and Augmented Reality.
ISMAR ’10; Washington, DC, USA: IEEE Computer Society; 2010, p.
99–108.

[5] Debevec, P.. Rendering synthetic objects into real scenes: bridging tra-
ditional and image-based graphics with global illumination and high dy-
namic range photography. In: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques. SIGGRAPH ’98; New
York, NY, USA: ACM; 1998, p. 189–198.

[6] Agusanto, K., Li, L., Chuangui, Z., Sing, N.W.. Photorealistic rendering
for augmented reality using environment illumination. In: Proceedings of
the 2nd IEEE/ACM International Symposium on Mixed and Augmented
Reality. ISMAR ’03; Washington, DC, USA: IEEE Computer Society;
2003, p. 208–216.

[7] Heymann, S., Smolic, A., Müller, K., Froehlich, B.. Illumination recon-
struction from real-time video for interactive augmented reality. In: In-
ternational Workshop on Image Analysis for Multimedia Interactive Ser-
vices (WIAMIS’05). Montreux, Switzerland; 2005, p. 1–4.

[8] Supan, P., Stuppacher, I., Haller, M.. Image based shadowing in
real-time augmented reality. International Journal of Virtual Reality
2006;5(3):1–7.

[9] Ritschel, T., Grosch, T.. On-line estimation of diffuse materials. In:
Dritter Workshop Virtuelle und Erweiterte Realitaet der GI-Fachgruppe
VR/AR; vol. 3. 2006, p. 95–106.

10



[10] Sato, I., Sato, Y., Ikeuchi, K.. Acquiring a radiance distribution to
superimpose virtual objects onto a real scene. IEEE Transactions on Vi-
sualization and Computer Graphics 1999;5(1):1–12.

[11] Korn, M., Stange, M., von Arb, A., Blum, L., Kreil, M., Kunze, K.J.,
et al. Interactive augmentation of live images using a hdr stereo camera.
Journal of Virtual Reality and Broadcasting 2007;4(12):107–118.

[12] Dachuri, N., Kim, S.M., Lee, K.H.. Estimation of few light sources from
environment maps for fast realistic rendering. In: Proceedings of the 2005
international conference on Augmented tele-existence. ICAT ’05; New
York, NY, USA: ACM; 2005, p. 265–266.

[13] Havran, V., Smyk, M., Krawczyk, G., Myszkowski, K., Seidel, H.P..
Importance sampling for video environment maps. In: ACM SIGGRAPH
2005 Sketches. SIGGRAPH ’05; New York, NY, USA: ACM; 2005,.

[14] Debevec, P.. A median cut algorithm for light probe sampling. In: ACM
SIGGRAPH 2005 Posters. SIGGRAPH ’05; New York, NY, USA: ACM;
2005,.

[15] Clarberg, P., Jarosz, W., Akenine-Möller, T., Jensen, H.W.. Wavelet
importance sampling: efficiently evaluating products of complex func-
tions. In: ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05; New York,
NY, USA: ACM; 2005, p. 1166–1175.

[16] Keller, A.. Instant radiosity. In: Proceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques. SIGGRAPH ’97;
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.; 1997,
p. 49–56.

[17] Dachsbacher, C., Stamminger, M.. Reflective shadow maps. In: Pro-
ceedings of the 2005 symposium on Interactive 3D graphics and games.
I3D ’05; New York, NY, USA: ACM; 2005, p. 203–231.

[18] Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., Aila, T.. In-
cremental instant radiosity for real-time indirect illumination. In: Pro-
ceedings of Eurographics Symposium on Rendering 2007. Eurographics
Association; 2007, p. 277–286.

[19] Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C.,
Kautz, J.. Imperfect shadow maps for efficient computation of indirect
illumination. In: ACM SIGGRAPH Asia 2008 papers. SIGGRAPH Asia
’08; New York, NY, USA: ACM; 2008, p. 129:1–129:8.

[20] Ritschel, T., Grosch, T., Dachsbacher, C., Kautz, J.. The state of
the art in interactive global illumination. Computer Graphics Forum
2012;31:160–188.

[21] Nakamae, E., Harada, K., Ishizaki, T., Nishita, T.. A montage method:
the overlaying of the computer generated images onto a background pho-
tograph. In: Proceedings of the 13th annual conference on Computer
graphics and interactive techniques. SIGGRAPH ’86; New York, NY,
USA: ACM; 1986, p. 207–214.

[22] Fournier, A., Gunawan, A.S., Romanzin, C.. Common illumination
between real and computer generated scenes. In: Proceedings of Graphics
Interface ’93. Toronto, ON, Canada; 1993, p. 254–262.

[23] Drettakis, G., Robert, L., Bougnoux, S.. Interactive common illumina-
tion for computer augmented reality. In: Proceedings of the Eurographics
Workshop on Rendering Techniques ’97. 1997, p. 45–56.

[24] Pessoa, S., Moura, G., Lima, J., Teichrieb, V., Kelner, J.. Photorealistic
rendering for augmented reality: A global illumination and brdf solution.
In: 2010 IEEE Virtual Reality Conference (VR). Washington, DC, USA:
IEEE Computer Society; 2010, p. 3–10.

[25] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R.,
Kohli, P., et al. Kinectfusion: real-time 3d reconstruction and interaction
using a moving depth camera. In: Proceedings of the 24th annual ACM
symposium on User interface software and technology. UIST ’11; New
York, NY, USA: ACM; 2011, p. 559–568.

[26] Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,
Davison, A.J., et al. Kinectfusion: Real-time dense surface mapping
and tracking. In: Proceedings of the 10th IEEE International Symposium
on Mixed and Augmented Reality. ISMAR ’11; Washington, DC, USA:
IEEE Computer Society; 2011, p. 127–136.

[27] Lieberknecht, S., Huber, A., Ilic, S., Benhimane, S.. Rgb-d camera-
based parallel tracking and meshing. In: Proceedings of the 10th IEEE
International Symposium on Mixed and Augmented Reality. ISMAR ’11;
Washington, DC, USA: IEEE Computer Society; 2011, p. 147–155.

[28] Lensing, P., Broll, W.. Fusing the real and the virtual: A depth-camera
based approach to mixed reality. In: Proceedings of the 10th IEEE In-
ternational Symposium on Mixed and Augmented Reality. ISMAR ’11;
Washington, DC, USA: IEEE Computer Society; 2011, p. 261–262.

[29] Heckbert, P.S.. Simulating global illumination using adaptive meshing.
Ph.D. thesis; EECS Department, University of California; 1991.

[30] Segovia, B., Iehl, J.C., Mitanchey, R., Péroche, B.. Non-interleaved
deferred shading of interleaved sample patterns. In: Proceedings of
the 21st ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware. GH ’06; New York, NY, USA: ACM; 2006, p. 53–60.

[31] Park, Y., Lepetit, V., Woo, W.. Texture-less object tracking with on-
line training using an rgb-d camera. In: Proceedings of the 10th IEEE
International Symposium on Mixed and Augmented Reality. ISMAR ’11;
Washington, DC, USA: IEEE Computer Society; 2011, p. 121–126.

11


